Minimum requirements for underneath of your pillow. However, write your own summary! You need to know the story behind the equations...

T: Pressure
V: Volume
n : particle number
$\mathrm{T}_{\text {trip }}$: temperature of triple point of water
R: Gas constant
α : phase of a system
$?^{0}$: standard value of a therm. function (1 bar, and typically at room temperature)

X : mole fraction
P_{c} : pressure at critical point
Be aware of typos.

IDEAL GAS (no interactions no volume of the species)
(More realistic equations such as the van der Waals equation include the interaction of the particles and there volume.)
Boyl's law

Gay-Lussac \& Charles laws
Avogadro's law

$$
\begin{aligned}
& V \propto 1 / P \text { for } \mathrm{n} \& \mathrm{~T}=\text { constant } \\
& \left\{\begin{array}{l}
V \propto T \text { for } \mathrm{n} \& \mathrm{P}=\text { constant } \\
p \propto T \text { for } \mathrm{n} \& \mathrm{~V}=\mathrm{constant}
\end{array}\right. \\
& V \propto n \text { for } \mathrm{P} \& \mathrm{~T}=\text { constant }
\end{aligned}
$$

Equal volumes of different gases have equal numbers of particles if T and p are constant. Or, $\mathrm{p}, \mathrm{V}, \mathrm{T}$
$=$ const (i.e. are the same for two different gases) than the number of particles n is the same.

General ideal gas equation
Dalton’s law

$$
\begin{aligned}
& P V=n R T \\
& P_{\text {tot }}=P_{1}+P_{2}+P_{3}+\ldots
\end{aligned}
$$

A reversible process is

- one where a system is always infinitesimally close to equilibrium,
- and an infinitesimal change in conditions can reverse the process to restore both system and surroundings to their initial states.

Extensive properties are equal to the sum of their values (e.g. volume, mass, heat, c_{p}). Intensive properties do not depend on the amount of matter (e.g. temperature, density).

THERMODYNAMIC FUNCTIONS

mechanical work

$$
\begin{aligned}
& w={ }_{L} \int_{\vec{r}_{1}}^{\vec{r}_{2}} F(\vec{r}) d \vec{r} \\
& w_{\text {tot }}={ }_{L} \int_{1}^{2} d w=-{ }_{L} \int_{1}^{2} P d V
\end{aligned}
$$

pressure work

$$
c_{P}=\left(\frac{d q}{d T}\right)_{P=c o n s t} ; c_{V}=\left(\frac{d q}{d T}\right)_{V=c o n s t}
$$

$$
c_{P}=\left(\frac{\partial H}{\partial T}\right)_{P=\text { const }} ; c_{V}=\left(\frac{\partial U}{\partial T}\right)_{V=\text { const }}
$$

$$
c_{V}-c_{P}=n R \text { (ideal gas) }
$$

Enthalpy

$$
\left\{\begin{array}{c}
H:=U+P V \\
\Delta H=q \text { for } \mathrm{P}=\text { constant } \\
\Delta U=q \text { for } \mathrm{V}=\text { constant }
\end{array}\right.
$$

adiabatic expansion
(Joule-Thomson, Linde apparatus for liquefying air, fast expansion of a gas, open suddenly a gas cylinder without a regulator - don't do that at home)

$$
\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{R / c_{V}} ; P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} ; \gamma=C_{P} / C_{V}
$$

$$
\text { compare } p V \propto \text { const (Boyl' s law) with } p V^{\gamma} \propto \text { const (Poisson eq) }
$$

state functions
(e.g. U, Cp, Cv)
non state functions

$$
{ }_{L} \int_{1}^{2} d b=\Delta b=b_{2}-b_{1} ; \oint d b=0
$$

$\Delta \mathrm{b}$ is independent of the way from initial (1) to final (2) state

$$
\begin{equation*}
\int_{1}^{2} d q=q \tag{e.g.q,w}
\end{equation*}
$$

$d S=\frac{d q}{T} ; d S=\left(\frac{\Delta H}{T}\right)_{T \& P=\text { const }}$
(What is difference between dS and C_{p} ?)

Gibbs equation

$$
d G=V d P-S d T+\sum_{\alpha} \sum_{i=1}^{k} \mu_{i}^{\alpha} d n_{i}^{\alpha}
$$

Important definitions:

Enthalpy	$H=U+P V$
Helmholz free energy	$A=U-T S$
Gibbs energy	$G=H-T S$

heat engine

$\eta=1+\frac{q_{2}}{q_{1}}=1-\frac{T_{2}}{T_{1}}$
refrigerator \& heat pump

Coefficient of performance
refrigerator $K=q_{c} / w$ heat pump $\mathrm{e}=-\mathrm{q}_{\mathrm{H}} / \mathrm{w}$

Carnot cycle

Cycles: 2 x isothermal and 2 x adiabatic

$$
\eta=\frac{\text { work output }}{\text { heat input }}=1+\frac{q_{2}}{q_{1}}=1-\frac{T_{2}}{T_{1}}
$$

	heat	work
$1 \text {--> } 2$ isothermal	$\begin{aligned} & \mathrm{q}_{1}=\mathrm{q}_{12}= \\ & -\mathrm{RT}_{1} \ln \left(\mathrm{~V}_{2} / \mathrm{V}_{1}\right) \end{aligned}$	$\mathrm{w}_{12}=-\mathrm{q}_{1}$
$2 \text {--> } 3$ adiabatic	$\mathrm{q}_{23}=0$	$\mathrm{w}_{23}=-\mathrm{c}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$3 \text {--> } 4$ isothermal	$\begin{aligned} & \mathrm{q}_{2}=\mathrm{q}_{34}= \\ & -\mathrm{RT}_{2} \ln \left(\mathrm{~V}_{4} / \mathrm{V}_{3}\right) \end{aligned}$	$\mathrm{w}_{34}=-\mathrm{q}_{2}$
$4 \text {--> } 1$ adiabatic	$\mathrm{q}_{41}=0$	$\mathrm{w}_{41}=-\mathrm{cv}_{\mathrm{v}}\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)$

Note that the equation $W_{23}=-C_{V} \Delta T$ for an adiabatic step is very useful for analyzing these cycles (see above and try to remember that). (Why?: $\Delta \mathrm{U}=\mathrm{c}_{\mathrm{V}} \Delta \mathrm{T}$ for an ideal gas that is basically the definition of an ideal gas-, $1^{\text {st }}$ law $\Delta \mathrm{U}=\mathrm{w}+\mathrm{q}$, adiabatic step $\mathrm{q}=0$).

MATERIAL EQUILIBRIUM

$$
d S_{\Sigma}=d S_{\text {system }}+d S_{\text {surrounding }}=\left\{\begin{array}{c}
=0 \text { reversible } \\
>0 \text { irreversible }
\end{array}\right\} \text { process }
$$

A:=U-TS (Helmholts free energy)	$\mathrm{G}:=\mathrm{H}-\mathrm{TS}$ (Gibbs free energy)
cf., maximum work for $\mathrm{V}=$ const process (Arbeitsfunktion = thermodynamic work function)	cf., maximum work for $\mathrm{P}=$ const process
$\mathrm{dA}=0$ at equilibrium for $\mathrm{T} \& \mathrm{~V}=$ constant	$\mathrm{dG}=0$ at equilibrium for $\mathrm{T} \& \mathrm{P}=$ constant
chemical potential $\quad \mu_{i}^{\alpha}=($	$T=$ const $P=$ const all mole numbers except $\mathrm{n}^{\alpha}{ }_{\mathrm{i} \neq \mathrm{j}}=$ const

$$
\sum_{\alpha} \sum_{i=1}^{k} \mu_{i}^{\alpha} d n_{i}^{\alpha}=0 \text { T \& } \mathrm{P}=\text { const or } @ \mathrm{~T} \& \mathrm{~V}=\mathrm{const}
$$

phase equilibrium

$$
\mu_{i}^{\alpha}=\mu_{i}^{b}
$$

μ of species i is the same in every phase that contains i
In approaching the equilibrium: i flows from phase with larger μ to phase with lower μ.

$$
\mu_{\mathrm{i}}=\mu_{\mathrm{i} \mathrm{~T}}^{0}+\mathrm{RT} \ln \left(\mathrm{P}_{\mathrm{i}} / \mathrm{P}^{0}\right) \text { (ideal gas) }
$$

PHASE DIAGRAMS
 $$
\mathrm{H}_{2} \mathrm{O}
$$

 $\mathrm{H}_{2} \mathrm{O}$

 $\mathrm{H}_{2} \mathrm{O}$}

Phase rule: $f=p c+2-p-c(p-1)-r-a$
f : degree of freedom; constraints: number of p : phases; c : species; r: reactions; a: other restrictions such as stoichiometry, conservation of charge
Example: $\mathrm{H}_{2} \mathrm{O}$ solid phase region ($\mathrm{f}=2$); liquid-gas equilibrium ($\mathrm{f}=1$).
$\mathrm{T}>\mathrm{T}_{\mathrm{c}} \rightarrow$ density (liquid) $=$ density (gas)
$\Delta \mathrm{H}_{\mathrm{m}}{ }^{\text {vap }} \rightarrow 0$ for $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}$
Clausius-Clapeyon $\frac{d \ln P}{d T} \approx \frac{\Delta H}{R T^{2}} ; \ln \left(\frac{P_{2}}{P_{1}}\right) \approx-\frac{\Delta H_{m}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
Metastable phase $\mathrm{G}_{\alpha}>\mathrm{G}_{\beta}$ leads to a slow phase change $\alpha \rightarrow \beta$ example: diamond \rightarrow graphite

Phase transititions (Ehrenfest classification) $1^{\text {st }}$ order: $=\frac{\partial \mu}{\partial T}$ is discontinuous
$2^{\text {nd }}$ order: $=\frac{\partial \mu}{\partial T}$ is discontinuous and $\frac{\partial^{2} \mu}{\partial^{2} T}$ is discontinuous

STANDARD THERMODYNAMIC FUNCTIONS

$$
\begin{aligned}
v_{1} A_{1}+v_{2} A_{2}+\ldots & \rightarrow v_{m} A_{m}+v_{m+1} A_{m+1} \\
0 & \rightarrow \sum_{i} v_{i} A_{i}
\end{aligned}
$$

Standard enthalpy of formation

$$
\Delta H^{0}=\sum_{i} v_{i} \Delta H_{f}{ }^{0}
$$

Def.: $\Delta H_{f}{ }^{0}$ is the enthalpy change for isothermally ($\mathrm{T}=$ const) conversion of pure elements in their reference forms (typically their most stable forms) to a standard-state substance. Standard state is typically 1 atm \& 25C.

$$
\begin{aligned}
& \text { C(graphite) }+\mathrm{H}_{2} \text { (ideal gas)+"O(ideal gas)" } \rightarrow \mathrm{H}_{2} \mathrm{CO} \text { (id. gas) } \\
& \text { e.g. } \Delta \mathrm{H}^{0}=\Delta H_{f}^{0}\left(H_{2} \mathrm{CO}\right)=\Delta H_{f}^{0}(\text { graphite })+\Delta H_{f}^{0}\left(H_{2} \text { ideal gas }\right)+\Delta H_{f}^{0} \text { (oxygen id. gas) }
\end{aligned}
$$

Hess's law: elements $+\mathrm{O}_{2} \rightarrow$ combustion product \rightarrow desired molecule $+\mathrm{O}_{2}$ We need $\Delta_{f} H^{0}$ for a product that cannot be synthesized from its elements. H is a state function, i.e., we can add chemical equations and the corresponding $\Delta_{f} H^{0}$ together.

Kirchhoff's law

(problem we know $\Delta \mathrm{H}_{0}\left(\mathrm{~T}_{1}\right)$ we need $\Delta \mathrm{H}_{0}\left(\mathrm{~T}_{2}\right)$)

$$
\Delta H_{T_{2}}^{0}-\Delta H_{T 1}^{0}=\int_{T_{1}}^{T_{2}} \Delta C_{p}^{0} d T
$$

Entropy

Gibbs energy

$$
\begin{aligned}
& \Delta S_{T}^{0}=\sum_{i} v_{i} S_{m, T, i}^{0} \\
& \Delta G_{T}^{0}=\sum_{i} v_{i} G_{m, T, i}^{0}
\end{aligned}
$$

LAWS OF THERMODYNAMICS

$\mathbf{0}^{\text {th }}$ law Definition of the temperature.

(Leads to the definition of a standard entropy.)
Part B: Unattainability principle: The absolute zero temperature 0 Kelvin cannot be reached.

GAS MIXTURES.

Chemical potential

$$
\mu_{1}=\mu_{i}^{0}+R T \ln \left(P_{i} / P^{0}\right)
$$

Equilibrium constant

$$
\Delta G^{0}=-R T \ln \left(K_{p}^{0}\right) \text { with } K_{p}^{0}:=\frac{\prod_{\text {products }}\left(P_{i} / P^{0}\right)^{v}}{\prod_{\text {reactants }}\left(P_{j} / P^{0}\right)^{v}} ; K_{p}^{0}=e^{-\Delta G^{0} / R T}
$$

$$
\begin{aligned}
& \frac{d \ln \left(K_{p}^{0}\right)}{d T}=\frac{\Delta H^{0}}{R T^{2}} \\
& \ln \left(\frac{K_{p}^{0}\left(T_{2}\right)}{K_{p}^{0}\left(T_{1}\right)}\right) \approx \frac{\Delta H^{0}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{aligned}
$$

SOLUTIONS

Partial molar volume

$$
\bar{V}_{j}=\left(\frac{\partial V}{\partial n_{j}}\right)_{T, P, n(i \neq j)=c o n s t}
$$

Total volume

$$
V=\sum_{j} n_{j} \bar{V}_{j} \text { (obeyed or all extensive properties of a solution) }
$$

Important equations

$$
\frac{\partial \Delta_{m i x} G}{\partial P}=\Delta_{m i x} V ; \frac{\partial \Delta_{m i x} G}{\partial T}=-\Delta_{m i x} S
$$

Ideal solution \quad def. $\mu_{i}=\mu_{i}^{\text {pure }}(T, P)+R T \ln \left(x_{i}\right)$

$$
\Delta_{m i x} S=-R \sum_{i} n_{i} \ln \left(x_{i}\right) ; \quad \Delta_{m i x} G=R T \sum_{i} n_{i} \ln \left(x_{i}\right)
$$

$\Delta_{\text {mix }} H=0 ; \quad \Delta_{\text {mix }} U=0$

Raoult's law The ratio of the partial vapor pressure of each component of the solution to the corresponding vapor pressure of the pure liquids is equal to the mole fraction of that component in the liquid mixture.
vapor pressure of A in the solution vapor pressure of pure A = mole fraction of A $\mathrm{P}_{\mathrm{i}}=X_{i}^{\text {liquid }} P_{i}^{\text {pure }}$
Ideally dilute solution $\quad X_{\text {solvent }} \rightarrow 1$

$$
\begin{aligned}
& \mu_{\text {solute }}=\mu_{\text {solute }}^{0}(T, P)+R T \ln \left(x_{\text {solute }}\right) \\
& \mu_{\text {solvent }}=\mu_{\text {solvent }}^{0}+R T \ln \left(x_{\text {solvent }}\right)
\end{aligned}
$$

Henry's law $\quad \mathrm{P}_{\text {solute }}=$ Const $_{\text {solute }} X_{\text {solute }}^{\text {liquid }}$ (Raoult's law is obeyed for the solvent)

useful but not necessarily to memorize:

$$
\begin{aligned}
& d H=T d S+V d P \\
& d A=-S d T-P d V \\
& d G=-S d T+V d P
\end{aligned}
$$

Gibbs equations

Thermal expansion coefficient $\quad \alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P \& V=\text { const }}\left(\frac{\partial P}{\partial T}\right)_{V_{m}}=\frac{\alpha}{\kappa}$

Isothermal compressibility

$$
\begin{aligned}
& \kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T \& n=\text { const }} \\
& \text { (for an ideal gas } \left.\alpha=\frac{1}{T} ; \kappa=\frac{1}{P}\right)
\end{aligned}
$$

Joule Thomson experiment (adiabatic expansion of a gas, $\Delta \mathrm{H}=0$)
$\mu=\left(\frac{\partial T}{\partial p}\right)_{H}=\frac{T\left(\frac{\partial V}{\partial T}\right)_{P}-V}{C_{p}}=\left\{\begin{array}{l}>0 \text { for } \mathrm{T}<\mathrm{T}_{\mathrm{i}} \text { "cooling" } \\ <0 \text { for } \mathrm{T}>\mathrm{T}_{\mathrm{i}} \text { "heating" }\end{array}\right.$
$T_{i}=\frac{2 a}{R b}$ (inversion temperature), for He well below room temperature
Maxwell Relations

$$
\begin{aligned}
& \left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P} \\
& \left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} \quad\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}
\end{aligned}
$$

That scheme helps to remember the partial derivatives of the thermodynamic potentials

1) Choose one of the potentials (e.g. U),
2) choose the denominator (e.g. S)
3) go to the other side of the square and find the parameter kept constant (e.g. V)
4) go along the arrow starting at the position of the denominator (e.g. S)
5) and you will find the partial derivative $(\delta U / d S)_{v}=T$
(Note: going along the arrow +,
in the opposite direction -)

V: Volume	A: Helholtz free energy
T: Temperature	G: Gibbs energy
P: Pressure	H: Enthalpy
S: Entropy	U: internal energy

$$
\begin{array}{ll}
\left(\frac{\partial U}{\partial S}\right)_{V}=T \quad\left(\frac{\partial U}{\partial V}\right)_{S}=-P \\
\left(\frac{\partial A}{\partial T}\right)_{V}=-S & \left(\frac{\partial A}{\partial V}\right)_{T}=-P \\
\left(\frac{\partial G}{\partial T}\right)_{P}=-S & \left(\frac{\partial G}{\partial P}\right)_{T}=V \\
\left(\frac{\partial H}{\partial S}\right)_{P}=T \quad\left(\frac{\partial H}{\partial P}\right)_{S}=V
\end{array}
$$

Mixing entropy

$\Delta_{m i x} S=-\sum_{i} n_{i} R \ln \left(x_{i}\right) ;$
$n_{i}:$ mole fraction

The entropy of an ideal gas mixture is equal to the sum of the entropies each pure gas would have if it alone occupied the volume of the mixture (at the temperature of the mixture). Follows basically from Daltons law ($\mathrm{P}_{\text {tot }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\ldots$).

REAL GASES

Van der Waals equation

Compression factor

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

$$
Z(P, T)=\frac{p V_{m}}{R T}=\frac{V_{m}}{V_{m}^{\text {ideal }}}
$$

$$
\begin{array}{ll}
\text { ideal gas } & p V=n R T \\
\text { real gas } & p V=Z R T \\
& Z(P, T): \text { compression factor }
\end{array}
$$

Virial equation

$$
P V=R T\left(1+B / V+C / V^{2}+D / V^{3}+\ldots\right)
$$

Maxwell construction ...
Law of corresponding states: If we define reduced parameters (e.g. $\mathrm{P}_{\mathrm{r}}=\mathrm{P} / \mathrm{P}_{\mathrm{c}}$) then V_{r} equals approximately $f\left(P_{r}, T_{r}\right)$ for all gases.

