Minimum requirements for underneath of your pillow. However, write your own summary! You need to know the story behind the equations...
The summary is not necessarily directly related to your exams. I may ask you to explain concepts rather than memorizing equations. However, you have to know some of them.

Be aware of typos.

CLASSIC EXPERIMENTS

Blackbody radiation	$E=n h v ; n=0,1,2,3, \ldots$ Which led to: $\begin{aligned} & R(\lambda)=\frac{2 \pi h c}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1} \\ & T \lambda_{\max }=\text { const } \quad \text { Wien's displacement law } \\ & E_{\text {tot }}=\int_{0}^{\infty} R(\lambda) d \lambda \approx T^{4} \quad \text { Stefan-Boltzmann's law } \end{aligned}$
Photoelectric effect Experimental results: threshold frequency n0 n0 depends on substance light intensity ~ \# of photoelectrons Ekin independent of light intensity	Quantization of light $E_{\text {photon }}=h v$ Photoelectric effect $E_{k i n}=h v-\phi$

Emission/absorption spectra \& Bohr's model

$$
\bar{v}=\frac{1}{\lambda}=R_{\infty}\left(\frac{1}{n^{\prime 2}}-\frac{1}{n^{2}}\right)
$$

Particle in a 1D box $\begin{gathered} \|\psi\|^{2}=2 / a \sin ^{2}\left(\frac{n \pi x}{a}\right) \\ E=\frac{h^{2}}{8 m a} n^{2} \approx n^{2} \\ E_{0}=E(n=1) \end{gathered}$	Harmonic oscillator Look it up \& write your own summary

> wave functions
> $\Psi=\Psi\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots, t\right)$
> $=\Psi\left(\vec{r}_{i}, t\right)$
> $=e^{-i E t / \hbar} \psi(\vec{r})$
> $\psi=\psi\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots\right)=\psi\left(\vec{r}_{i}\right)$

SCHRÖDINGER EQUATION

$$
\begin{aligned}
& -\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m_{i}} \frac{\partial^{2} \Psi}{\partial x_{i}^{2}}+V \Psi \quad \text { (time dependent) } \\
& -\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V(x) \psi(x)=V(x) \psi(x) \quad \text { (time independent) }
\end{aligned}
$$

with operators
$\hat{H} \equiv-\frac{\hbar^{2}}{2 m} \nabla^{2}+V \quad$ (Hamilton operator)
$-\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}=\hat{H} \Psi \quad$ (time dependent) $\quad \hat{H} \psi=E \psi \quad$ (time independent)

Eigenvalues

The possible results in a measurement of a physical/chemical quantity are the Eigenvalues of the corresponding observable.
$\hat{M} \Psi=c \Psi$; Ψ is Eigenfunction of the operator \hat{M} with Eigenvalue c.

Averaging
... what was this all about?

OPERATORS

observable		operator	
name	symbol	symbol	operation
position	x	\hat{X}	multiply by x
momentum	p_{x}	\hat{p}_{x}	$-i \hbar \frac{\partial}{\partial x}$
kinetic energy	K_{x}	\hat{K}_{x}	$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$
potential energy	$\mathrm{V}(\mathrm{x})$		
total energy	E		
angular momentum	$\mathrm{Lx}=\mathrm{yp}_{z}-\mathrm{zp} \mathrm{y}$		

Approximation methods

Variation theorem
The true ground state energy, i.e., the eigenvalue of the time-independent
Hamilton operator \hat{H} of a quantum-mechanical system obeys

