Minimum requirements for underneath of your pillow. However, write your own summary! You need to know the story behind the equations...

The summary is not necessarily directly related to your exams. I may ask you to explain concepts rather than memorizing equations. However, you have to know some of them.

Be aware of typos.

CLASSIC EXPERIMENTS

Emission/absorption spectra & Bohr's model

$$\overline{\nu} = \frac{1}{\lambda} = R_{\infty} \left(\frac{1}{n^{\prime 2}} - \frac{1}{n^2}\right)$$

wave functions	probabilities
$\Psi = \Psi(x_1, y_1, z_1, x_2, y_2, z_2, \dots, t)$	$P = \int \Psi^2 d\tau$
$=\Psi(\vec{r_i},t)$	J
$=e^{-iEt/\hbar}\psi(\vec{r})$	
$\psi = \psi(x_1, y_1, z_1, x_2, y_2, z_2,) = \psi(\vec{r_i})$	

SCHRÖDINGER EQUATION

$-\frac{\hbar}{i}\frac{\partial\Psi}{\partial t} = -\frac{\hbar}{2i}$	$\frac{\partial^2}{m_i} \frac{\partial^2 \Psi}{\partial x_i^2} + V \Psi \qquad (t)$	ime dependent)	
$-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x)}{\partial x^2}$	$+V(x)\psi(x) = V(x)$	$\psi(x)$ (time indep	pendent)
with operators			
$\hat{H} \equiv -\frac{\hbar^2}{2m}\nabla^2 + V$	V (Hamilton operat	tor)	
$-\frac{\hbar}{i}\frac{\partial\Psi}{\partial t} = \hat{H}\Psi$	(time dependent) $\hat{H}\psi = E\psi$	(time independent)

Eigenvalues		
The possible results in a measurement	$M\Psi = c\Psi$; Ψ is Eigenfunction of	
of a physical/chemical quantity are the	the operator \hat{M} with Eigenvalue c.	
Eigenvalues of the corresponding		
observable.		

Averaging

... what was this all about ?

OPERATORS

observable		0	operator	
name	symbol	symbol	operation	
position	Х	Â	multiply by x	
momentum	p _x	\hat{p}_x	$-i\hbar \frac{\partial}{\partial x}$	
kinetic energy	K _x	\hat{K}_x	$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}$	
potential energy	V(x)			
total energy	Е			
angular momentum	Lx=yp _z -zp _y			

Approximation methods

Variation theorem

The true ground state energy, i.e., the eigenvalue of the time-independent Hamilton operator $\hat{H}\,$ of a quantum-mechanical system obeys

$$\frac{\int \phi^* \hat{H} \phi d\tau}{\int \int_{\tau} \phi^* \phi d\tau} \ge E_{gr,true}$$