

17

Class **CHIEM763** Chemical Kinetics

Final summary

© Uwe Burghaus, NDSU 2011

Summary

Summary or Primer on PChem class room kinetics

- Conversion rates
- Reaction rates
- Rate laws
- Reaction order
- Half time
- Arrhenius Eq.

Please note that this is not a complete summary.

Write your own summary to prepare for the finals as well as look in the study guide.

Chemical kinetics - definitions

PChem – kinetics

r: is the rate of a process and not a velocity (we are not discussing cars on a highway)

- **k: is a reaction rate coefficient** and not a speed constant or something ... *k is not even constant it depends on the temperature*
 - v: is the preexponential coefficient and not a frequency factor, only for 1st order processes equals the dimension of v 1/s and even in that case it is not a frequency

You are a scientist use the correct wording and not kiddy bla bla....

$$r = k[A]^{\alpha}[B]^{\beta}\dots$$

r: reaction rate = number of particles formed in a given time k: reaction rate coefficient α , β : partial reaction orders $\alpha+\beta+...$: total reaction order

1st order

 2^{nd} order $2I \rightarrow I_2$ $2NOBr \rightarrow 2NO + Br$ $2NO_2 \rightarrow 2 NO + O_2$

gas-surface	$O_2(gas) \rightarrow 2O_{ad}, k$ r = k $O_2(gas)$	$CO_{ad}+O_{ad} \rightarrow CO_{2} (gas), k_{r}$ $CO_{ad} \leftarrow \rightarrow CO(gas), k_{d}$ $r = k_{r}CO_{ad}O_{ad}$
liquid		H ⁺ +OH ⁻ → H ₂ O

gas phase

Surface Reaction Kinetics

PChem – kinetics

 $\dim(r) = \frac{concentration}{time}$ $\dim(k) = \frac{concentration^{1-n}}{time}$ 1st order 2nd order $\dim(k) = \frac{1}{\frac{cm^3}{mol}\sec} = \frac{mol}{cm^3\sec}$ $\dim(k) = \frac{1}{\sec}$ in theory papers: $\dim(\widetilde{k}) = \frac{1}{\sec}$ $\widetilde{r} = [A]r$

Arrhenius

Svante August Arrhenius (born 1859)

- his ancestors were farmers
- his uncle was Professor of Botany
- 1876 he entered University of Uppsala to study mathematics, chemistry and physics.
- thesis in 1884 about electro chemistry
- 1903 nobel prize in chemistry

$$r = k[A]^n \dots$$

$$k = v e^{-E/RT}$$

v: pre-exponential factorE: activation energyR: gas constantT: temperature

Arrhenius equation – this is very important \rightarrow therefore more details here

PChem – kinetics

Arrhenius equation – this is very important \rightarrow more details here

Branching ratios, apparent activation energies

Be aware of "pitfalls" ...

Example: CO oxidation on silver and gold catalysts is "faster" at lower temperatures than at large T.

How is this possible?

$$CO_{ad} \longleftrightarrow_{Flux, E_d} CO_{gas}$$

$$CO_{ad} + O_{ad} \xrightarrow{k_r} CO_{2,gas}$$

 $E_d - E_r < 0$ Ag, Au $E_d - E_r = 0$ "no" temperature dependence $E_d - E_r > 0$ Pt, Pd Possible temperature dependence of reaction rate coefficients

Surface Reaction Kinetics

Linearization of the Arrhenius Eq.

intercept = $\ln(\nu)$

Arrhenius equation – analogy with Van't Hoff equation

PChem – kinetics

Arrhenius equation: Where is the activation energy, E_a, coming from? Just giving you an idea...

PChem - kinetics

Arrhenius equation – where is the preexponential coming from? Just giving you an idea:

PChem – kinetics

transition state theory \rightarrow more details later

Kinetic isotope effects

PChem – kinetics

reaction coordinate

Consider a reaction that includes a $C \leftarrow \rightarrow H$ $C \leftarrow \rightarrow D$

bond breaking.

The difference in the zero point energies leads to different activation energies.

PChem – kinetics

Half-life method (e.g. determining the reaction order)

$$r = k[A]^{n}$$

$$t_{1/2} = \frac{2^{n-1} - 1}{(n-1)[A]^{n-1}k} \quad \text{log}(t_{1/2}) = \log(\frac{2^{n-1} - 1}{(n-1)k}) - (n-1)\log([A]_{0})$$

Problem: experimental uncertainty

Steady state approximation Rate determining step approximation Pre-equilibrium

not exactly the same but related ideas: briefly

kinetics

approximations

R: reactants I: intermediate P: products

PChem – kinetics

- 1) Use some kind of approximation to decouple the differential equations in order to integrate them analytically.
- 2) Linearize the result in order to obtain kinetics parameters from simple data plots.

However, this is hopeless in most cases considering realistic problems.

Carl David Tolmé Runge (1856 – 1927) was a German mathematician, physicist, and spectroscopist.

Martin Wilhelm Kutta (1867 – 1944) was a German mathematician.

http://en.wikipedia.org/wiki/Runge-Kutta

Computational / numerical integration of rate equations

PChem – kinetics

Kinetics leads typically to coupled first order differential equations such as:

$$\frac{dy}{dt} = y(t) - y(t)z(t)$$
$$\frac{dz}{dt} = -z(t)$$

or
$$\frac{dy_i(t)}{dt} = f_i'(t, y_1, ..., y_n)$$

 $f'_i(t, y_1, ..., y_n)$ are known functions.

How can we find y(t), z(t) which obeys these equations (for a simple initial value problem e.g. y(t=0)=1.5, z(t=0)=0)? Just giving you an idea how this works:

Euler method

$$y_{n+1} = y_n + \Delta n f'(x_n, y_n)$$

Midpoint method:

Do a trial step to the middle of the interval Δn use this information to compute the direction for the full step.

Runge-Kutta method 🙂

This one consists basically of four Euler steps. It is one of the most often used workhorses.

Computational / numerical integration of rate equations

PChem – kinetics

Runge-Kutta is great

but most rate equations are "stiff" differential equations.

$$\frac{d[CO]}{dt} = F - k_d [CO] - k_r [CO][O]$$

$$\uparrow \qquad \uparrow$$

$$1 \times 10^{13} \qquad 1 \times 10^{-2}$$

Runge-Kutta and other standard methods work here only with very very small step sizes over small intervals. I learned this the hard way...

Look in numeric books, computational chemistry techniques outlines, etc.. The program you can down load from our web site applies the Rosenbrock algorithm which can handle stiff equations.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, *Numerical recipes*, 3rd edition, Cambridge University Press.

Computational / numerical integration of rate equations

PChem – kinetics

$$y_{n+1} = y_n + \Delta n f'(x_n, y_n)$$

The new value y_{n+1} is given explicitly from the old (y_n) one.

This is not a very stable scheme.

If f ' is doing strange things the scheme does not converge.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, *Numerical recipes*, 3rd edition, Cambridge University Press.

http://en.wikipedia.org/wiki/Spock

Summary of the kinetics primer

0th order reaction Determining reaction rates and reaction orders Sequential reactions Rate determining step approximation Pre-equilibrium Nth order reactions Parallel reactions **Reversible reactions** Perturbation-relaxation methods Diffusion controlled reactions Lindemann Catalysis idea Radical chain reactions Polymerization Explosions