$\mathbb{C H E M}$ M63 Chemicall

Class
17

Final summary

Summary or Primer on PChem class room kinetics

- Conversion rates
- Reaction rates
- Rate laws
- Reaction order
- Half time
- Arrhenius Eq.

Please note that this is not a complete summary.
Write your own summary to prepare for the finals as well as look in the study guide.

Chemical kinetics - definitions

Surface Reaction Kinetics

$\mathrm{aA} \rightarrow \mathrm{bB}$

A, B: molecules
[A],[B]: concentrations a, b: stoichiometric factors $\mathrm{n}_{\mathrm{a}}, \mathrm{n}_{\mathrm{b}}$: particle numbers V: volume

Rate of conversion

$$
J=-\frac{1}{a} \frac{d n_{A}}{d t}=\frac{1}{b} \frac{d n_{B}}{d t}
$$

Rate of reaction

$$
r=\frac{J}{V}=-\frac{1}{a} \frac{d[A]}{d t}
$$

kinetics

Common mistakes - use correct \& precise wording

PChem - kinetics
\mathbf{r} : is the rate of a process and not a velocity (we are not discussing cars on a highway)
\mathbf{k} : is a reaction rate coefficient and not a speed constant or something $\ldots k$ is not even constant it depends on the temperature
v : is the preexponential coefficient and not a frequency factor, only for $1^{\text {st }}$ order processes equals the dimension of $v 1 / s$ and even in that case it is not a frequency

You are a scientist use the correct wording and not kiddy bla bla....

$$
r=k[A]^{\alpha}[B]^{\beta} \ldots .
$$

r: reaction rate $=$ number of particles formed in a given time k : reaction rate coefficient
α, β : partial reaction orders
$\alpha+\beta+\ldots$: total reaction order

	rder	$2^{\text {nd }}$ order
gas phase		$\begin{aligned} & 2 \mathrm{I} \rightarrow \mathrm{I}_{2} \\ & 2 \mathrm{NOBr} \rightarrow 2 \mathrm{NO}+\mathrm{Br} \\ & 2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2} \end{aligned}$
gas-surface	$\begin{gathered} \mathrm{O}_{2} \text { (gas) } \rightarrow \underset{\mathrm{r}=\mathbf{k O}_{2}(\mathrm{gas})}{2 \mathrm{O}_{\mathrm{ad}}} \mathbf{k} \end{gathered}$	$\begin{gathered} \mathrm{CO}_{\mathrm{ad}}+\mathrm{O}_{\mathrm{ad}} \rightarrow \mathrm{CO}_{2} \text { (gas), } \mathrm{k}_{\mathrm{r}} \\ \mathrm{CO}_{\mathrm{ad}} \longleftrightarrow \mathrm{CO}^{2} \text { gas), } \mathrm{k}_{\mathrm{d}} \\ \mathrm{r}=\mathrm{k}_{\mathrm{r}} \mathrm{CO}_{\mathrm{ad}} \mathrm{O}_{\mathrm{ad}} \end{gathered}$
liquid		$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathbf{O}$

Surface Reaction Kinetics

$$
\begin{aligned}
& t_{1 / 2}=\frac{\ln (2)}{k} \\
& {[A](t)=[A]_{0} e^{-k t}} \\
& r=k[A]^{1}
\end{aligned}
$$

$$
\begin{aligned}
& t_{1 / 2}=\frac{1}{k[A]_{0}} \\
& {[A](t)=\frac{[A]_{0}}{1+k t[A]_{0}}} \\
& r=k[A]^{2}
\end{aligned}
$$

kinetics

kinetics
$\operatorname{dim}(r)=\frac{\text { concentration }}{\text { time }}$

$1^{\text {st }}$ order
$\operatorname{dim}(k)=\frac{1}{\sec }$

$$
\operatorname{dim}(k)=\frac{\text { concentration }^{1-n}}{\text { time }^{2}}
$$

$$
2^{\text {nd }} \text { order }
$$

$$
\operatorname{dim}(k)=\frac{1}{\frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \mathrm{sec}}=\frac{\mathrm{mol}}{\mathrm{~cm}^{3} \mathrm{sec}}
$$

in theory papers:

$$
\begin{aligned}
& \operatorname{dim}(\widetilde{k})=\frac{1}{\sec } \\
& \widetilde{r}=[A] r
\end{aligned}
$$

Svante August Arrhenius

 (born 1859)- his ancestors were farmers
- his uncle was Professor of

Botany

- 1876 he entered University of Uppsala to study mathematics, chemistry and physics.
- thesis in 1884 about electro chemistry
- 1903 nobel prize in chemistry

$$
\begin{array}{ll}
\boldsymbol{r}=k[A]^{n} \cdots \cdot & \begin{array}{l}
\text { v: pre-exponential factor } \\
\text { E: activation energy } \\
\text { R: gas constant } \\
\text { T: temperature }
\end{array} \\
k=V e^{-E / R T}
\end{array}
$$

Arrhenius equation - this is very important $\boldsymbol{\rightarrow}$ therefore more details here

PChem - kinetics

0 important

Arrhenius equation - this is very important \rightarrow more details here

PChem - kinetics

Arrhenius

$$
\begin{aligned}
& \mathbb{K}=K[A]^{n} \cdots \cdots \quad \begin{array}{l}
\text { v: pre-exponential factor } \\
\text { E: activation energy } \\
\text { R: gas constant } \\
\text { T: temperature }
\end{array} \\
& K=\mathbb{R}-E / R T \quad l
\end{aligned}
$$

Branching ratios, apparent activation energies

Surface Reaction Kinetics

- The larger T the "faster" the reactions

$$
k_{\mathrm{CO}_{2}}=\frac{k_{d}}{k_{r}} \approx e^{\{-(\underbrace{\left.\left(E_{d}-E_{r}\right) / R T\right\}}_{\substack{\text { apparent } \\ \text { activation energy }}}}
$$

Really?
Be aware of "pitfalls" ...

Example:
CO oxidation on silver and gold
catalysts is "faster" at lower
temperatures than at large T.

How is this possible?

$$
\begin{aligned}
& C O_{a d} \longleftrightarrow{\mathrm{Flux}, E_{d}}^{\longrightarrow} O_{\text {gas }} \\
& C O_{a d}+\mathrm{O}_{a d} \xrightarrow[k_{r}]{ } \mathrm{CO}_{2, \text { gas }}
\end{aligned}
$$

$$
E_{d}-E_{r}<0 \quad \mathrm{Ag}, \mathrm{Au}
$$

$$
E_{d}-E_{r}=0 \quad \text { "no" temperature dependence }
$$

$$
E_{d}-E_{r}>0 \quad \mathrm{Pt}, \mathrm{Pd}
$$

Possible temperature dependence of reaction rate coefficients DDU

Surface Reaction Kinetics

Linearization of the Arrhenius Eq.

Surface Reaction Kinetics

$k=v e^{-E_{a} / R T}$
Arrhenius Eq.

$$
\ln (k)=\ln (v)-\frac{E_{a}}{R} \frac{1}{T}
$$

$$
\begin{aligned}
& \text { slope }=\frac{E_{a}}{R} \\
& \text { intercept }=\ln (v)
\end{aligned}
$$

PChem - kinetics

$$
\frac{d \ln \left(K_{p}^{0}\right)}{d T}=\frac{\Delta H^{0}}{R T^{2}}
$$

Van't Hoff Eq.

$$
\frac{d \ln (k)}{d T}=\frac{E_{a}}{R T^{2}}
$$

Arrhenius idea

$\frac{d \ln (k)}{d T}=\frac{E_{a}}{R T^{2}} / *^{\prime \prime} d T^{\prime \prime}$

$\int d(\ln k)=\int \frac{E_{a}}{R T^{2}} d T$
$\ln (k)=-\frac{E_{a}}{R} \frac{1}{T}$
$k=e^{-E_{a} / R T} \quad$ Arrhenius Eq.

Arrhenius equation: Where is the activation energy, E_{a}, coming from? Just giving you an idea...

PChem - kinetics

Threshold for bond breaking bond making?

$$
\frac{d N_{\varepsilon_{t r}}}{N}=g e^{-\frac{\varepsilon_{r r}}{k T}}
$$

Arrhenius equation - where is the preexponential coming from? Just giving you an idea:

PChem - kinetics

reaction coordinate
$v \sim$ probability for going over the "hill"
v : molecular vibrations
$v \sim 10^{13} / \mathrm{sec}$

transition state theory \rightarrow more details later

Kinetic isotope effects

PChem - kinetics

reaction coordinate

Consider a reaction that includes a

$$
\mathrm{C} \leftarrow \rightarrow \mathrm{H}
$$

$$
\mathrm{C} \leftarrow \rightarrow \mathrm{D}
$$

bond breaking.
The difference in the zero point energies leads to different activation energies.

kinetics

PChem - kinetics

$$
r=k[A]^{n}
$$

$$
t_{1 / 2}=\frac{2^{n-1}-1}{(n-1)[A]^{n-1} k} \curvearrowright \log \left(t_{1 / 2}\right)=\log \left(\frac{2^{n-1}-1}{(n-1) k}\right)-(n-1) \log \left([A]_{0}\right)
$$

Problem: experimental uncertainty
kinetics

Steady state approximation Rate determining step approximation Pre-equilibrium

$\mathrm{R} \rightarrow \mathrm{I} \rightarrow \mathrm{P}$
$\frac{d[I]}{d t} \approx 0 \underset{\substack{\text { approximations }}}{\substack{\text { steady sta }}}$

R: reactants
I: intermediate
P: products

PChem - kinetics

1) Use some kind of approximation to decouple the differential equations in order to integrate them analytically.
2) Linearize the result in order to obtain kinetics parameters from simple data plots.

However, this is hopeless in most cases considering realistic problems.

Carl David Tolmé Runge (1856-1927)
was a German mathematician, physicist, and spectroscopist.

Martin Wilhelm Kutta (1867-1944) was a German mathematician.
http://en.wikipedia.org/wiki/Runge-Kutta

PChem - kinetics

Kinetics leads typically to coupled first order differential equations such as:

$$
\begin{aligned}
& \frac{d y}{d t}=y(t)-y(t) z(t) \\
& \frac{d z}{d t}=-z(t)
\end{aligned}
$$

or $\frac{d y_{i}(t)}{d t}=f_{i}^{\prime}\left(t, y_{1}, \ldots, y_{n}\right)$
$f_{i}^{\prime}\left(t, y_{1}, \ldots, y_{n}\right)$ are known functions.
How can we find $y(t), z(t)$ which obeys these equations (for a simple initial value problem e.g. $\mathrm{y}(\mathrm{t}=0)=1.5$, $\mathrm{z}(\mathrm{t}=0)=0)$?

Just giving you an idea how this works:

Euler method

$$
y_{n+1}=y_{n}+\Delta n f^{\prime}\left(x_{n}, y_{n}\right)
$$

Midpoint method:
Do a trial step to the middle of the interval $\Delta \mathrm{n}$ use this information to compute the direction for the full step.
Runge-Kutta method
This one consists basically of four Euler steps. It is one of the most often used workhorses.

Runge-Kutta is great
but most rate equations are "stiff" differential equations.

$$
\frac{d[\mathrm{CO}]}{d t}=F-\overbrace{1 \times 10_{d}^{13}[\mathrm{CO}]-{\underset{k}{r}}[\mathrm{CO}][\mathrm{O}]}^{\substack{ \\k^{13}}}
$$

Runge-Kutta and other standard methods work here only with very very small step sizes over small intervals. I learned this the hard way...

Look in numeric books, computational chemistry techniques outlines, etc.. The program you can down load from our web site applies the Rosenbrock algorithm which can handle stiff equations.

[^0]kinetics

Computational / numerical integration of rate equations

PChem - kinetics

$$
\begin{gathered}
\text { Explicit methods } \\
y_{n+1}=y_{n}+\Delta n f^{\prime}\left(x_{n}, y_{n}\right)
\end{gathered}
$$

The new value y_{n+1} is given explicitly from the old $\left(\mathrm{y}_{\mathrm{n}}\right)$ one.

This is not a very stable scheme.
If f ' is doing strange things the scheme does not converge.

Implicit methods

$$
y_{n+1}=\frac{y_{n}}{1+n * h}
$$

have a better stability.
For example:
$\mathrm{h} \rightarrow \infty$ then $\mathrm{y}_{\mathrm{n}+1} \rightarrow 0$

want more..?..
W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical recipes, $3^{\text {rd }}$ edition, Cambridge University Press.

$0^{\text {th }}$ order reaction
Determining reaction rates and reaction orders
Sequential reactions
Rate determining step approximation
Pre-equilibrium
Nth order reactions
Parallel reactions
Reversible reactions
Perturbation-relaxation methods
Diffusion controlled reactions
Lindemann
Catalysis idea
Radical chain reactions
Polymerization
Explosions

[^0]: W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical recipes, $3^{\text {rd }}$ edition, Cambridge University Press.

